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Abstract

We give a unified viewpoint of moment maps in the case of symplectic, hyper-Kähler, quaternion-
Kähler and holomorphic contact manifolds. The Higgs field can be regarded as a moment map
under some additional conditions in each case. Using dimensional reductions and moment maps,
we reduce the standard 1 instanton onHP 1 ∼= S4 to anSO(3) instanton onCP 1 × CP 1 and the
standard 1 instanton onHPn to the standard 1 instanton onGr2(C

n+1). © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to show that the standard 1 instanton onHP 1 ∼= S4 can
be reduced to anSO(3) instanton onCP 1 × CP 1 and the standard 1 instanton onHPn

can be reduced to the standard 1 instanton onGr2(Cn+2) by dimensional reductions and
moment maps (Theorems 4.4 and 4.5). We hope that this method would be useful for finding
a quaternion ASD connection, because known examples of quaternion ASD connections
are quite a few.

Though the idea of dimensional reduction is well developed in [7,10], we review it in
more geometrical way. In Section 2, the Lie derivative and the Higgs field are defined from
the viewpoint of a principal fibre bundle. We review the formulae about the Higgs field and
these formulae are exploited throughout this paper. In particular, one of the equations in
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the formulae (Proposition 2.10) can be considered as the defining equation of a moment
map in the case of symplectic, hyper-Kähler, quaternion-Kähler and holomorphic contact
manifolds under some additional conditions. As a result, we obtain the unified viewpoint
of these moment maps in Section 3.

For a moment map on a symplectic manifold, this is a well-known fact in the theory
of geometric quantization [4]. When we apply this viewpoint in the case of hyper-Kähler
manifold, it naturally leads to a conception of an SD connection which is a generalization
of a self-dual connection in four-dimensional Riemannian geometry. However, it turns out
that an SD connection is a strictly limited object in the higher-dimensional case. In fact, we
have obtained Theorem 3.4.

As a result, if the structure group is compact, the Higgs field equals the usual hyper-Kähler
moment map [6] under some conditions. On a quaternion-Kähler manifold, Galicki defines
the moment map [2]. A quaternion-Kähler manifold has no symplectic form, and so a
quaternion-Kähler moment map may look different from symplectic and hyper-Kähler mo-
ment maps. Indeed, a quaternion-Kähler moment map is really a section of a vector bundle.
However, our viewpoint enables us to give a similar explanation of a quaternion-Kähler
moment map. In this case, we also need an SD connection which is defined in the almost
same way as an SD connection on a hyper-Kähler manifold. On a quaternion Kähler man-
ifold, an SD connection is a rigid object [11] (see Theorem 3.9). As a result, we obtain the
Galicki–Lawson formula [3] (see Proposition 3.10). In the case of a holomorphic contact
manifold, a particular connection is also defined using the holomorphic contact form and
the holomorphic contact line bundle. The curvature form of the connection isnottype(1,1),
and so this has no relation with a holomorphic vector bundle structure. But the Higgs field
which relates to the connection can be considered as a moment map. In fact, under some
conditions, the reduction procedure is possible and the quotient space is a new holomorphic
contact manifold (Proposition 3.13).

In the final section, we prove the main theorem. Following the idea of dimensional
reduction [10], we pursue it on a Riemannian manifold with an isometry group to obtain a
connection on the quotient principal fibre bundle. We shall apply our theory for the principal
fibre bundle on the zero momentum level set, and so we need a moment map. To obtain
a connection form on the zero momentum level set ofS4, we pull back the standard 1
instanton onS4. However, in the case ofHPn, we introduce a slightly different way, using
the large symmetry of the standard 1 instanton onHPn. This large symmetry induces the
reduction of the structure group.

2. Dimensional reduction

First of all, we review the conception of dimensional reduction from a geometrical
viewpoint, because we wish to work mainly on principal fibre bundles (for details, see
[10]). In this section, we assume the following assumption.

Assumption 2.1. Let πV : V → M be a vector bundle overM with structure groupG,
whereG is a compact Lie group. A compact Lie groupH acts onM andV from the left in
such a way that
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• πV isH -equivariant(πV (h(v)) = h(πV (v)) for v ∈ V, h ∈ H), and
• theH action onV commutes with theG action,(h(vg) = h(v)g for v ∈ V, h ∈ H,

g ∈ G).

More precisely,H action induces linear actions preserving theG structure on the fibres
of V .

Definition 2.2. Let ξV andξM be vector fields onV andM, respectively, generated by
ξ ∈ h, whereh is the Lie algebra ofH .

Remark. By Assumption 2.1, we have dπV (ξV ) = ξM , and we obtain an anti-homomorphism
from the Lie algebrah to the Lie algebras of vector fieldsX (V ) orX (M), respectively.

Lemma 2.3. Let s be a section of V. When we regard a section s as a map from M to V, the
differential of s is denoted byds. Thends(ξM) − ξV is a vector field along the fibre on V,
whereξ ∈ h.

Proof. From the equivariance ofπV , it follows that dπV (ds(ξM) − ξV ) = d(πV s)
(ξM) − ξM = 0. �

Definition 2.4 (Mason and Woodhouse [10, p. 28]). Using a natural identification between
the fibreVx of V and the tangent vector space along the fibreTv(Vx), wherex is a point
in M andv ∈ Vx , we can regard ds(ξM) − ξV as a section ofV , for eachξ ∈ h. Then a
differential operatorLξ : Γ (V ) → Γ (V ) is defined as

(Lξ s)x := dsx(ξ
M) − ξVs(x),

whereΓ (V ) is the space of smooth sections ofV . We shall callLξ a Lie derivative.

Lemma 2.5 (Mason and Woodhouse [10, p. 28]).We have the following formulae:

1. Lξ (s1 + s2) = Lξs1 + Lξs2 for arbitrary s1, s2 ∈ Γ (V ).
2. Lξ (fs) = ξM(f )s + fLξ s for arbitrary f ∈ C∞(M) ands ∈ Γ (V ).
3. L[ξ,η] = −[Lξ , Lη], whereξ, η ∈ h.

Proof. The formulae (1) and (2) are trivial. Since we have an anti-homomorphism
[ξ, η]M = −[ξM, ηM ], the minus sign is needed in assumption (3) in Lemma 2.5. �

Example 2.6. If V is a tangent bundle ofM, our Lie derivative equals the usual Lie
derivative. In such a case, the Lie algebrah is the Lie algebra of vector fields itself, and
so the maph → X (M) is a homomorphism. Hence, we have no contradiction in Lemma
2.5(3).

Definition 2.7 (Mason and Woodhouse [10, p. 49]). Let∇ be a covariant derivative onV .
For ξ ∈ h, we defineAξ : Γ (V ) → Γ (V ):

Aξ := ∇ξM − Lξ .
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Remark. The standard argument shows thatAξ is a section of EndV the bundle of endo-
morphisms ofV . We callAξ a Higgs field.

Next, the Higgs field is reformulated from the viewpoint of a principal fibre bundle.
Let πP : P → M be the associated principal fibre bundle toV with structure groupG.
The action ofH is assumed to be lifted in the same way as in Assumption 2.1. For any
ξ ∈ h, we denote byξP the vector field onP generated byξ . Whens is a section ofV , the
correspondingG-equivariant map fromP toV0 is denoted bỹs, whereV0 is a vector space
satisfyingP ×G V0 = V . In other words, we haves(πP (p)) = [p, s̃(p)], where [p, v0] is
an element ofV represented by(p, v0) ∈ P × V0.

Lemma 2.8. The Lie derivative corresponds to the usual derivative ofs̃:Lξs = [p,ds̃(ξP )],
wherep ∈ P andξ ∈ h.

Proof. When the natural projectionP × V0 → V is denoted byπG, we have
ds(ξM) = dπG(ξP ,ds̃(ξP )) andξV = dπG(ξP ,0). �

We assume that the covariant derivative∇ onV corresponds to a connection 1-formω
onP . The definition of the Higgs field and Lemma 2.8 give the following formula.

Lemma 2.9. We have

Aξs = [p,ωp(ξ
P )s̃(p)], p ∈ P.

Remark. The commutativity of the actions ofH andG implies thatξPpg = Rg∗ξPp . Com-
bined with Lemma 2.9, it follows that the Higgs fieldAξ is also regarded as a section of the
adjoint vector bundleP ×Ad g. On the other hand, sinceωhp(ξ

P
hp) = ωp((Ad(h−1)ξ)Pp ),

we obtainAAd(h)ξ = hAξ h−1.

Among many formulae which the Higgs field satisfies, we need the following proposition.

Proposition 2.10 (Mason and Woodhouse [10, p. 50]).Let R∇ ∈ Ω2(EndV ) be the
curvature2-form of∇. If the connection1-formω is invariant under the action of H on P,
then for eachξ ∈ h, the Higgs fieldAξ satisfies the equation

∇XAξ = R∇(X, ξM),

where X is a tangent vector of M.

Proof. The tangent vectorX is lifted and extended as the horizontal vector fieldX̃ on the
principal fibre bundleP . From Assumption 2.1, we obtainLξP ω = 0, and so the vector

field [X̃, ξP ] is horizontal. The corresponding curvature form onP is denoted byΩ. Then,
we getΩ(X̃, ξP ) = X̃ω(ξP ) = ∇XAξ . �
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Proposition 2.11 (Mason and Woodhouse [10, p. 50]).Under the same notation as in
Proposition2.10,we have

R∇(ξM, ηM) = [Aξ ,Aη] − A[ξ,η]

for arbitrary ξ, η ∈ h.

Proof. Since the connection is invariant under the action ofH , (LξP ω)(η
P ) = ξPω(ηP )

− ω([ξP , ηP ]) = 0. Then, we obtain

Ω(ξP , ηP ) = −ηPω(ξP ) + [ω(ξP ), ω(ηP )] = −ω([ξ, η]P ) + [ω(ξP ), ω(ηP )].

We use Lemma 2.9 to get the result. �

3. Moment maps

In this section, it is explained that the Higgs field can be considered as a moment
map in the case of symplectic, hyper-Kähler, quaternion-Kähler and holomorphic con-
tact manifolds under some additional conditions. From this point of view, the equation in
Proposition 2.10 is regarded as the defining equation of moment maps and from Remark
below Lemma 2.9(AAd(h)ξ = hAξ h−1), the equivariance of moment maps are
automatically satisfied.

In the case of symplectic manifold, this is a well-known fact [4, p. 265] in the
theory of geometric quantization. In this theory, one of the important things is the exis-
tence of a line bundle with a connection of which the curvature form equals the symplectic
form up to a constant. Under Assumption 2.1, the Higgs field is a moment map,
because the bundle of endomorphisms is a trivial bundle, and so the Higgs fieldAξ is only a
function.

3.1. Hyper-Kähler case

Let (M, g, I, J,K) be a hyper-Kähler manifold. In addition to Assumption 2.1, the
compact Lie groupH is assumed to act onM preserving the hyper-Kähler structure.

To regard the Higgs field as a moment map, we need a vector bundle with a particular
connection.

Definition 3.1. LetV be a vector bundle on a hyper-Kähler manifoldM with a connection
∇. We shall call∇ anSD connection, if the curvature 2-form is locally expressed as a linear
combination of three Kähler formsωI , ωJ andωK .

Lemma 3.2. We assume that the real dimension of hyper-Kähler manifold M is greater
than or equal to8. Let E be a vector bundle on M and∇ be an SD connection on E.
If a vector bundle E-valued2-form S satisfiesd∇S = 0, then S is parallel with respect
to the induced connection. (The differential operatord∇ means the covariant exterior
derivative.)
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Proof. For brevity,I, J andK are written asI1, I2 andI3, respectively. By the hypothesis,S

is locally expressed as
∑3

α=1Bα⊗ωα, whereBα(α = 1,2,3) are local sections ofE. Since
all the Kähler formsωα are closed, d∇S = 0 if and only if

∑3
α=1 ∇Bα ∧ ωα = 0. For an

arbitrary tangent vectorX, there exists a unit tangent vectorY such thatX is perpendicular
toY, IY, JYandKY, because the real dimension is greater than or equal to 8. Then, we have

0=
(

3∑
α=1

∇Bα ∧ ωα

)
(X, Y, IY)

=
3∑

α=1

∇XBαωα(Y, IY) + ∇YBαωα(IY, X) + ∇IYBαωα(X, Y )

=
3∑

α=1

∇XBαωα(Y, IY) = ∇XB1.

In a similar way, we obtain∇XB2 = 0 and∇XB3 = 0. Since three Kähler forms are also
parallel with respect to the Riemannian connection, it follows that∇S = 0. �

Corollary 3.3. If the real dimension of hyper-Kähler manifold M is greater than or equal
to 8, then the curvature form of an SD connection is parallel with the induced connection,
and so an SD connection is a Yang–Mills connection.

Theorem 3.4. If the real dimension of a hyper-Kähler manifold M is greater than or equal
to 8, then the holonomy algebra of an SD connection is commutative.

Proof. Let V be a vector bundle with an SD connection∇. By definition, the curvature
2-formR∇ is locally expressed as

∑3
α=1Aα⊗ωα, whereAα(α = 1,2,3) are local sections

of EndV . Combined with Corollary 3.3, the Ricci identity yields [R∇ , Aβ ] = 0, and so

0 =
[

3∑
α=1

Aα ⊗ ωα,Aβ

]
= [A1, Aβ ] ⊗ ω1 + [A2, Aβ ] ⊗ ω2 + [A3, Aβ ] ⊗ ω3

for an arbitraryβ = 1,2,3. Since the curvature form is parallel (Corollary 3.3), the Ambrose
and Singer theorem (cf. [8, p. 89]) implies the desired result. �

The structure groupG of P is assumed to be compact, and so Theorem 3.4 yields that
G is a total group, ifP admits an SD connection. Then the Higgs field is decomposed
into three Lie algebrah-valued functions. Therefore, Proposition 2.10 yields the following
equation:

dµαξ = ιξMωα,

where(µ1, µ2, µ3) : M → h∗ × h∗ × h∗ is the Higgs field (up to a constant),ξ ∈ h and
µαξ is considered as a functionM → R(α = 1,2,3). These are the defining equations of
the well-known hyper-Kähler moment map [6].
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We give an example of SD connections. We regard a quaternion vector space(HN, 〈·, ·〉, I,
J,K) as a flat hyper-Kähler manifold, where,〈·, ·〉 is the standard inner product onR4N

which is the underlying real vector space ofH
N .

We putG := S1 × S1 × S1 andP := H
N × G which is a trivial principal fibre bundle

on H
N . Using a sections : H

N → P which is defined ass(x) = (x,1), we describe a
connection form onP as anR3 = LieG-valued 1-form onHN .

Definition 3.5. We define a connection form onωP as

ωPx (Y ) =
3∑

α=1

〈Y, Iαx〉eα, x ∈ H
N, Y ∈ TxH

N ∼= H
N,

where{e1, e2, e3} is the canonical basis ofR3.

Lemma 3.6. The connectionωP is an SD connection. More precisely, the curvature form
R∇ ofωP is expressed as

R∇ = 2
3∑

α=1

ωα ⊗ eα.

It is assumed that a compact Lie groupH acts linearly onHN preserving the quaternion
structure. Then the action ofH can be lifted toP as

h(x, g) = (hx, g), h ∈ H, x ∈ H
N, g ∈ (S1)3.

These actions ofH onH
N andP satisfy Assumption 2.1.

Lemma 3.7. The connectionωP is invariant under the action of H on P. The Higgs field
Aξ(ξ ∈ h) is written as

(Aξ )x =
(
x,

3∑
α=1

〈ξ · x, Iαx〉eα
)
,

whereξ ·x is the resulting vector whenξ acts on x by the induced Lie algebra representation
onH

N .

For brevity, we putAαξ = 〈ξ · x, Iαx〉.

Example (Donaldson [1]). We putHN := M(k; C)×M(k; C)×M(r, k; C)×M(k, r; C),
where, e.g.M(r, k; C) is a set of complexr × k matrices. The quaternion structure is
defined asI (α, β, a, b) := (iα, iβ, ia, ib) andJ (α, β, a, b) := (−β∗, α∗, b∗,−a∗) for
(α, β, a, b) ∈ H

N . When we regardHN as a complex vector space using the complex
structureI , then a Hermitian inner producth is defined ash((α, β, a, b), (γ, δ, c, d)) :=
trace(αγ ∗ + βδ∗ + c∗a + bd∗). Finally, H = U(k) acts onH

N in such a way that
h(α, β, a, b) := (hαh−1, hβh−1,ah−1,hb). Then the Higgs field is as follows:
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A1ξ = −i trace([α, α∗] + [β, β∗] − a∗a + bb∗)ξ,

A2ξ + iA3ξ = −2 trace([α, β] + ba)ξ.

3.2. Quaternion-Kähler case

Let (M, g) be a quaternion-Kähler manifold andS2
H be the quaternion-Kähler structure

bundle. Here, the vector bundleS2
H is a sub-bundle of the bundle of endomorphisms of the

tangent bundle ofM and is locally spanned byI, J,K. In addition to Assumption 2.1, the
compact Lie groupH is assumed to act onM preserving the quaternion-Kähler structure.

Galicki gives a notion of moment map on a quaternion-Kähler manifold.

Definition 3.8 (Galicki [2]). A map (more precisely, section)µ : M → h∗ ⊗S2
H is called

a moment map (section) ifµξ satisfies the equation

∇µξ = ιξM

3∑
α=1

ωα ⊗ Iα,

whereξ ∈ h, ωα = g(Iα·, ·) andµξ is considered as a section ofS
2
H.

Definition 3.1 still makes sense in the case of quaternion-Kähler manifold, and so we use
the same term SD connection. Then the author showed the following theorem.

Theorem 3.9 (Nagatomo [11]).We assume that the real dimension of a quaternion-Kähler
manifold M is greater than or equal to8 and the scalar curvature is not zero. Then
the curvature form of an SD connection is parallel and the holonomy algebra is iso-
morphic tosu(2) or commutative. Moreover, if M is simply-connected, then any non-flat
SD connection is gauge-equivalent to the induced connection ofS2

H by the Riemannian
connection.

Remark. In the case of hyper-Kähler manifold, the induced connection on “the quaternion-
structure bundle”S2

H is flat (∇I = ∇J = ∇K = 0). As we saw in Lemma 3.6, we have
no “rigidity theorem” for an SD connection on a hyper-Kähler manifold.

From Theorem 3.9, if we wish to regard the Higgs field as a moment map, we must
consider the lift of the action toS2

H. However, since we assume that the action preserves
the quaternion structure, the existence of such a lift is trivial. Next, the same assumption also
assures that the usual Lie derivativeLξM for sections of the bundle of endomorphisms of
the tangent bundle, whereξ ∈ h can be restricted to sections of the sub-bundleS2

H. Then,
by Example 2.6, the usual Lie derivativeLξM equals our Lie derivativeLξ in Definition
2.4. Therefore, we obtain the Galicki–Lawson formula.

Proposition 3.10 (Galicki and Lawson [3]).Under our notation, quaternion-Kähler
moment mapµ satisfiesµξ = ∇ξM − LξM (up to a constant), where∇ is the induced

connection onS2
H.



216 Y. Nagatomo / Journal of Geometry and Physics 41 (2002) 208–223

3.3. Holomorphic contact manifold

Let (M,L, α) be a holomorphic contact manifold, whereL is a holomorphic line bundle
andα is anL-valued holomorphic contact form.

We assume that the compact Lie groupH acts holomorphically and equivariantly on
M andL and the holomorphic contact formα is also preserved under the action ofH .
Moreover, it is assumed thatH acts linearly on the fibres ofL. Then, we require thatL has
anH -invariant Hermitian metric. To work on principal fibre bundles, we denote byL× the
complement of the zero section in the dual bundleL∗ of L and regardL× as the associated
principalC×(= C\0) bundle ofL. Consequently, there exists a holomorphic and horizontal
1-form α̃ onL× corresponding toα. Note thatR∗

c α̃ = cα̃ for c ∈ C
×, whereRc means

the right action ofc ∈ C
× onL×. Our assumption yields that there exists a principalS1

bundleπQ : Q → M which is a sub-bundle ofL×, andH acts onQ preserving the reduced
Hermitian connectionωQ. The 1-formα is also restricted toQ, for which we use the same
notation.

Using the standard homomorphismU(1) ∼= SO(2) → SO(3), we construct a princi-
pal SO(3) bundleP = Q ×SO(2) SO(3). Then the connection formωQ is extended as a

connection formωQ
P on P . We also want to extend̃α to P as anso(3)-valued 1-form.

To do so, we identifyso(3) with the imaginary part ofH. To put it more accurately,
we considerH as a rightSp(1) module and the isomorphism betweenso(3) and ImH is
given by

2




0 −Im β Reβ

Im β 0 −b

−Reβ b 0


 ∼= ib + jβ,

whereb ∈ R andβ ∈ C. Note that the Lie bracket of ImH is given by [q1, q2] = q2q1−q1q2
in our case. The subalgebraso(2) ⊂ so(3) is identified with{1

2ib ∈ Im H|b ∈ R}. Then the
horizontalso(3)-valued 1-formα̃P is defined as follows:

α̃P (Xp) = Ad(g−1){1
2jα̃(Xq)},

whereXp is a horizontal tangent vector atp of P with respect to the connectionωQ
P and

satisfiesXp = Rg∗Xq for q ∈ Q ⊂ P, g ∈ SO(3).

We define a new connection formωP onP asωP = ω
Q
P + α̃P .

Lemma 3.11. The curvature formΩP ofωP is expressed as

ΩP = Ω
Q
P − α̃P ∧ α̃P + d∇ α̃P ,

whereΩQ
P is the curvature form ofωQ

P and d∇ is the covariant exterior derivative with

respect toωQ
P . In particular, atq ∈ Q ⊂ P , we have

ΩPq = 1

2

{
i

(
dωQ + i

2
α̃ ∧ ¯̃α

)
+ jd∇ α̃

}
.
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Proof. This is due to a direct computation. �

The action ofH onQ can be extended toP and the extended action ofH preserves the
connectionωQ

P and the 1-form̃αP , and so the connectionωP . Moreover, the action ofH onP
satisfies Assumption 2.1. We now describe the Higgs field with respect to the connectionωP .

Lemma 3.12. We putAdQ(P ) = Q ×SO(2) so(3). Then the Higgs fieldAξ(ξ ∈ h) can
be considered as a section ofAdQ(P ). More precisely, atq ∈ Q ⊂ P , the Higgs field
corresponds to

1
2{iωQ(ξ

Q) + jα̃(ξQ)}.

Proof. From Lemma 2.9,Aξ correspond toωP (ξ
P ). By the definition of the action ofH

onP , we obtainξQq = ξPq atq ∈ Q ⊂ P . The definition of the connection formωP yields
the result. �

In this setting, we shall call the Higgs fieldAξ = [q, 1
2{iωQq(ξ

Q)+ jα̃q(ξQ)}] a moment
mapfor a holomorphic contact manifold.

To consider the reduction procedure by a moment map, we assume the following:

1. The curvature form dωQ determines a real symplectic structure onM. Since the curvature
form dωQ is of type(1,1), g(X, Y ) = dωQ(X, JY) is a symmetric tensor, whereJ is the
almost complex structure ofM. Then, we require thatg is a pseudo-Riemannian metric
onM andg(ξM, ξM) �= 0 for all non-zeroξ ∈ h. Moreover,J is parallel with respect
to the pseudo-Riemannian connection.

2. Under the usual identification between the real tangent bundleTM and the holomorphic
tangent bundleT (1,0)M, we have dωQ(X, ξ

M) = 0 for an arbitraryX ∈ Ker d∇α and
eachξ ∈ h.

3. The action ofH is free.
4. The Higgs fieldAξ is transverse to the zero section for eachξ ∈ h.

Remark. For our purpose, assumptions (1)–(3) may be satisfied on onlyA−1(0) ⊂ M.

Proposition 3.13. We putM0 = H \ A−1(0). Under the above assumptions, M0 has a
holomorphic contact manifold structure.

Proof. From assumption (4),A−1(0) ⊂ M is a submanifold and the quotientM0 is also
a manifold by assumption (3). Moreover, the same assumption assures the existence of a
complex line bundleL0 onM0 with a Hermitian structure which is defined as the quotient
of L byH overA−1(0).

By Lemma 3.12, for eachx ∈ A−1(0), we haveωQq(ξ
Q) = 0 andαx(ξM) = 0 for

all ξ ∈ h, whereq ∈ Q satisfiesπQ(q) = x. Lemma 3.11 yields that a tangent vectorX

at x is tangent toA−1(0) if and only if dωQ(X, ξ
M) = 0 and d∇α(X, ξM) = 0 for all

ξ ∈ h. Proposition 2.11 implies that dωQ(ξ
M, ηM) = 0 and d∇α(ξM, ηM) = 0 for all
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ξ, η ∈ h. Hence,hMx = {ξMx |ξ ∈ h} is a subspace ofTxA−1(0). Consequently, we obtain a
connection formω0 onL0 andL0-valued 1-formα0 such that the pull backs of them equals
ωQ andα, respectively. Then assumption (2) yields(d∇α0)

2(n−dimH) ∧ α0 �= 0, where
dimCM = 2n + 1.

Finally, we induce a complex structure onM0 and a holomorphic vector bundle struc-
ture onL0. Using the pseudo-Rimannian metric, we obtain the orthogonal direct sum
TxA

−1(0) = Hx ⊕hMx , becauseξMx is not a null vector for each non-zeroξ ∈ h. If X ∈ Hx ,
then d∇α(JX, ξM) = 0, becauseα is a holomorphic form, dωQ(JX, ξM) = −g(X, ξM) = 0
by the definition, andg(JX, ξM) = dωQ(X, ξ

M) = 0. Hence, we can introduce an almost
complex structure ofHx , and so one onM0. The integrability of this almost complex struc-
ture onM0 can be shown in a similar way to that in the case of Kähler quotient. Then,
the curvature form of the connectionω0 is of type(1,1), and soL0 is a holomorphic line
bundle onM0. Now it is clear thatα0 is a holomorphic contact form. �

4. Reduction of quaternion ASD connection

We review the idea of dimensional reduction [10], mainly to fix notation. Assumption 2.1
is also assumed in this section. However, instead of a vector bundleV , we use the associated
principal fibre bundleP . The principal fibre bundleπP : P → M is assumed to have an
invariant connection formω under the action of the compact Lie groupH .

If the action ofH onM is free, we obtain the quotientπM
0 : M → M0 = H \ M and

the principal fibre bundleπP0 : P0 = H \ P → M0. (The natural projection is denoted
by πP

0 : P → P0.) We wish to induce a connection form on the principal fibre bundle
P0. To do so, we assume thatM has an invariant Riemannian metricg under the action of
H . Since the connectionω gives a splitting of the tangent bundle ofP into the horizontal
sub-bundleH and the vector bundle along the fibres, we define a metricgH onH induced
by g, using the identificationHp

∼= TxM, whereπP (p) = x. ThengH is invariant under
the action ofH , because of Assumption 2.1 and the invariance ofg andω. The subspace
of TpP generated byh is denoted byhPp . Using the projectionπH : TpP → Hp induced
by the connectionω, we obtain dimπH(hPp ) = dimH , because the action ofH is free.
If we denote byπH(hPp )

⊥(⊂ Hp) the orthogonal complement ofπH(hPp ) ⊂ Hp, then

the invariance ofgH andω under the action ofH yields thath∗πH(hPp )
⊥ = πH(hPhp)

⊥,

whereh ∈ H . HenceH0πP
0 (p) = dπP

0 (πH(hPp )
⊥) defines a subspace ofTπP

0 (p)P0. Since
TπP

0 (p)P0 = H0πP
0 (p) ⊕ TπP

0 (p)(P0πM
0 πP (p)

) andRg∗H0πP
0 (p) = H0πP

0 (pg), whereg ∈ G,
the horizontal distribution{H0πP

0 (p)|p ∈ P } defines a connection formω0 onP0.

By pulling back the connection formω0 toP by the mapπP
0 : P → P0, we obtain a new

connection formω0 = πP∗
0 ω0. By definition,ω0 is also invariant under the action ofH .

Though the Higgs fieldA0
ξ can be considered with respect to the connectionω0, the definition

of the Higgs field implies thatA0
ξ = 0 for all ξ ∈ h. Then Propositions 2.10 and 2.11 yield

R∇0
(X, ξM) = 0, R∇0

(ξM, ηM) = 0 for all X ∈ TxM, ξ, η ∈ h, (1)

whereR∇0
is the curvature tensor ofω0.
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We define ag-valued 1-form onP asθ := ω − ω0 and regardθ as the vector bundle
Ad(P ) := P ×Ad g-valued 1-form onM. Then, we have

θ(X) = 0 for X ∈ hM⊥, θ(ξM) = Aξ for ξ ∈ h, (2)

wherehM⊥ is the orthogonal complement of the subspacehM of TM generated byh. A
direct computation shows that

R∇ = R∇0 + d∇0
θ + θ ∧ θ, (3)

whereR∇ is the curvature tensor ofω and d∇0
means the covariant exterior derivative with

respect toω0.
If X, Y ∈ hM⊥, we extendX andY as vector fieldsX̃ andỸ satisfyingX̃, Ỹ ∈ hM⊥,

respectively. Then, since the action ofH preserves the Riemannian metricg, we obtain a
skew-symmetric tensorC : hM⊥ × hM⊥ → h such thatC(X, Y )M equals the orthogonal
projection of [X̃, Ỹ ] to hM .

Lemma 4.1. For arbitrary X, Y ∈ hM⊥, we have

R∇(X, Y ) = R∇0
(X, Y ) − AC(X,Y ).

Proof. Eqs. (2) and (3) implyR∇(X, Y ) = R∇0
(X, Y ) + d∇0

θ(X, Y ). Using the ex-
tended vector fields̃X andỸ as above and Eq. (2), we get d∇0

θ(X, Y ) = −θ([X̃, Ỹ ]) =
−AC(X,Y ). �

Though the following formula is not used in this paper, we formulate it for reader’s
convenience.

Lemma 4.2. For arbitrary X ∈ hM⊥ andξ ∈ h, we have

∇XAξ = ∇0
XAξ .

Proof. Proposition 2.10 and Eqs. (1)–(3) imply∇XAξ = d∇0
θ(X, ξM). As usual,X is

extended to a vector field̃X as above. Then, it can be shown that [X̃, ξM ] ∈ hM⊥ for each
ξ ∈ h, becauseξM is a Killing vector field. Using (2), we obtain∇0

XAξ = ∇0
X̃
(θ(ξM)) =

d∇0
θ(X̃, ξM) + ∇0

ξM
(θ(X̃)) + θ([X̃, ξM ]) = d∇0

θ(X, ξM). �

From now on, these formulae are used for us to obtain the main theorem. We give a
definition of (quaternion) ASD connection.

Definition 4.3 (cf. Mamone Capria and Salamon [9]). LetM be a quaternion-Kähler man-
ifold andV be a vector bundle with a connection∇. Then∇ is called an ASD connection
if the curvature tensorR∇ satisfies

R∇(IX, IY) = R∇(JX, JY) = R∇(KX,KY) = R∇(X, Y ).
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Now two examples of ASD connections are given. The quaternion projective spaceHPn

is written asSp(n + 1)/Sp(1) × Sp(n). If we put P = Sp(n + 1)/Sp(1), thenP is a
principal fibre bundle onHPn with structure groupSp(n). Then the induced connection on
P by the canonical connection is an ASD connection [9]. We call this ASD connection the
standard 1 instanton onHPn. More geometrically, the standard 1 instanton is nothing but
the canonical connection on the quotient bundle of a trivial bundleHPn × C

2n+2 by the
tautological quaternion line bundle.

Next, complex Grassmaniann manifoldGr2(Cn+2) is one of quaternion-Kähler manifolds
and is expressed asSU(n + 2)/S(U(2) × U(n)). If we putP ′ = SU(n + 2)/SU(2), then
P ′ is a principal fibre bundle onGr2(Cn+2) with structure groupU(n). Then the induced
connection onP ′ by the canonical connection is an ASD connection [12]. We call this
ASD connection the standard 1 instanton onGr2(Cn+2). More geometrically, the standard
1 instanton is nothing but the canonical connection on the quotient bundle of a trivial bundle
Gr2(Cn+2) × C

n+2 by the tautological bundle.

Theorem 4.4. The standard1 instanton onHP 1 ∼= S4 is reduced to an SO(3) ASD
connection onCP 1 × CP 1 by the dimensional reduction and the moment map reduction.

Proof. We pull back the standard 1 instanton onS4 to obtain a holomorphic vector bun-
dle onCP 3 which is the Penrose twistor space ofS4. An S1 action onCP 3 is defined as
eiθ [z0; z1; z2; z3] := [eiθ z0; eiθ z1; e−iθ z2; e−iθ z3], wherez0, z1, z2 andz3 are the homoge-
neous coordinates onCP 3. As a homogeneous space,CP 3 is written asSp(2)/U(1)×Sp(1)
andSp(2)/U(1) is a principalSp(1) bundle onCP 3, which is denoted byP . Then, the pull
back connectionω of the standard 1 instanton can be regarded as a connection onP . A
subgroupS1 of Sp(2) is defined as diag(eiθ ,eiθ ,e−iθ ,e−iθ ) in a matrix representation of
Sp(2). Then, theS1 action onCP 3 can be lifted toSp(2) by the left multiplication of the
subgroupS1. We defineξ ∈ Lie(S1) ⊂ sp(2) as ξ := diag(i, i,−i,−i). The moment
mapµξ for the S1 action isµξ ([z0; z1; z2; z3]) = |z0|2 + |z1|2 − |z2|2 − |z3|2. Hence
S(U(2) × U(2)) ⊂ SU(4) acts onM := µ−1(0) transitively. The isotoropy subgroup at
[1; 0; 1; 0] of S(U(2)×U(2)) is denoted byK. We fix anSU(4)-invariant inner product on
su(4) and restrict it to the subalgebra Lie(S(U(2)×U(2))). Then we obtain the orthogonal
decomposition Lie(S(U(2)×U(2))) = k⊕Rξ ⊕m0, wherek := LieK andm0 is spanned
by matrices

If we restrict the inner product onsu(4) to Rξ ⊕ m0, we obtain a left-invariant metric
on M and this metric equals the induced metric by the Fubini–Study metric onCP 3.
The principal fibre bundleP and the connectionω are pull backed toM and the pull
backs are denoted by the same symbolsP andω, respectively. TheS1 actions onM and
P satisfy Assumption 2.1 when we putS1 = H , and the connectionω is an invariant
connection.

If Xx is a tangent vector atx ∈ M which is orthogonal toξMx , then there exists anX ∈ m
and ana ∈ S(U(2)×U(2)) such that dπ(La∗X) = Xx , whereπ : S(U(2)×U(2)) → M
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is a natural projection andLa is the left translation bya on S(U(2) × U(2)). We put
Xa = Ad(a)X. Using our notation,XM

a = dπ(R∗Xa) (R means the right translation) is a
vector field onM which equalsXx at x ∈ M. ThenXM

a is orthogonal toξM everywhere
onM, because Ad(b)ξ = ξ for anyb ∈ S(U(2) × U(2)). Therefore, when we compute
the tensorC(X, Y ), we may useXM

a andYM
a . Since we have [XM

a , YM
a ] = −[Xa, Ya ]M

and [Xa, Ya ] is orthogonal toξ , this impliesC(X, Y ) = 0 for arbitraryX, Y ∈ hM⊥, where
S1 = H . From Lemma 4.1, we know that the induced connectionω0 onP0 = S1 \ P has
a curvature form of type(1,1). Since theS1 action is not free onM, the structure group of
P0 is isomorphic toSp(1)/Z2 ∼= SO(3). Then the first Chern class ofP0 vanishes, and so
the curvature form ofω0 is orthogonal to the Kähler form onCP 1 × CP 1. Consequently,
the connectionω0 is an ASD connection. �

Theorem 4.5. The standard1 instanton onHPn is reduced to the standard1 instanton on
Gr2(Cn+1) by the dimensional reduction and the moment map reduction.

Proof. Galicki [2] shows thatGr2(Cn+1) can be obtained as the moment map reduction
from HPn by anS1 action. We regard a quaternion vector spaceH

n+1 as a rightH module.
Then, theS1 action onHPn is defined by eiθ [q0, q1, . . . , qn] := [eiθ q0,eiθ q1, . . . ,eiθ qn],
whereq0, . . . , qn are homogeneous coordinates onHPn. This S1 action onHPn can be
lifted toSp(n+1), if we regardS1 ∼= U(1)as the subgroup ofSp(n+1), using the “diagonal”
embedding (cf. the proof of Theorem 4.4). This lifted action onSp(n + 1) induces anS1

action onP . These actions ofU(1) on HPn andP satisfy Assumption 2.1, when we put
U(1) = H . Then, the standard 1 instanton is preserved by theS1 action, because the
canonical connection is preserved. If we denote byM the zero momentum level set, then
the subgroupU(n + 1) of Sp(n + 1) acts onM transitively, whereU(n + 1) is embedded
in the standard way. (When we putqi = zi + jwi , wherezi andwi represent complex
numbers,M = {[q0, q1, . . . , qn] ∈ HPn|∑n

i=0 |zi |2 = ∑n
i=0 |wi |2,

∑n
i=0 ziwi = 0}.) As

a homogeneous space,M is written asU(n + 1)/K, and we decompose the Lie algebra
u(n + 1) into the subspacesk andm, wherek is the Lie algebra ofK, m the orthogonal
complement ofk and an inner product onu(n+ 1) is induced by an invariant inner product
on sp(n + 1). The invariant inner product defines a bi-invariant metric onSp(n + 1) and
soSp(n)-invariant metricgP on P . In addition, the left-invariant metricg onM induced
by the restricted inner product onm equals the induced metric fromHPn. The pull back
principal fibre bundleP |M onM is also denoted byP and the pull back connection of the
standard 1 instanton onP is denoted byωP .

To put it more accurately, we pick upg0 ∈ Sp(n + 1) such that
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Under the natural projectionπ : Sp(n+ 1) → HPn, g0 represents a point inM. Using our
notation

and

where the right-hand side means the orthogonal decomposition and the orthogonal com-
plement ofk is m. We regardQ̃ = U(n + 1)g0 as a sub-bundle ofSp(n + 1)|M . Then
Ad(g−1

0 )(K) ∩ Sp(1) comprises only the unit element. HenceQ̃ can be considered as a
sub-bundle ofP . Then, using the metricgP andωP , a connection formω

Q̃
is defined in

such a way that the horizontal distribution is the orthogonal projection of the horizontal
subspace with respect toωP to the tangent space of̃Q. We define a new bundleQ as
the quotient ofQ̃ by Ad(g−1

0 )(SU(2)), and so the structure group ofQ is isomorphic to
U(n − 1). The principal fibre bundleQ has a connection formωQ inherited byω

Q̃
.

The connection formωQ onQ is also considered as follows. The canonical connection
onSp(n+ 1) and the bi-invariant metric onSp(n+ 1) define a connection oñQ in a similar
way. This is nothing but the Riemannian connection onM. Then the quotient bundle of
Q̃ by Ad(g−1)(SU(2)) is isomorphic to the bundleQ in a natural way and the inherited
connection form equals the connection formωQ. SinceS1 ∼= U(1) is also a subgroup of
U(n+ 1) from our definition,S1 acts onQ and this observation yields thatωQ is invariant
under the action ofU(n + 1) and in particular, the action ofS1. These action onM and
Q satisfy Assumption 2.1, when we substituteP andH in Assumption 2.1 intoQ andS1,
respectively. As usual, we define a principal fibre bundleQ0 = H \ Q onM0 = H \ M

and get a connection formω0 fromωQ.
The definition ofω0 implies that the horizontal distribution with respect toω0 is comprised

of the left translation of the subspacem0, and soω0 is nothing but the connection form
induced by the canonical connection onM0 = Gr2(Cn+1). Therefore, this is the standard
1 instanton onGr2(Cn+1). �

Remark. In the proof of Theorem 4.5, we used the principal fibre bundleQ. However, we
can define a principal fibre bundleP0 = H \ P onM0 and a connection form onP0 from
ωP . Then, in a similar way to the proof of Theorem 4.4, the new connection onP0 is also
an ASD connection.
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